37 research outputs found

    Wave Energy: a Pacific Perspective

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by The Royal Society and can be found at: http://rsta.royalsocietypublishing.org/.This paper illustrates the status of wave energy development in Pacific Rim countries by characterizing the available resource and introducing the region‟s current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region‟s vision of the future of wave energy

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    Lightweight Lempel-Ziv Parsing

    Full text link
    We introduce a new approach to LZ77 factorization that uses O(n/d) words of working space and O(dn) time for any d >= 1 (for polylogarithmic alphabet sizes). We also describe carefully engineered implementations of alternative approaches to lightweight LZ77 factorization. Extensive experiments show that the new algorithm is superior in most cases, particularly at the lowest memory levels and for highly repetitive data. As a part of the algorithm, we describe new methods for computing matching statistics which may be of independent interest.Comment: 12 page

    Compressed Suffix Arrays for Massive Data

    Get PDF
    We present a fast space-efficient algorithm for constructing compressed suffix arrays (CSA). The algorithm requires O(n log n) time in the worst case, and only O(n) bits of extra space in addition to the CSA. As the basic step, we describe an algorithm for merging two CSAs. We show that the construction algorithm can be parallelized in a symmetric multiprocessor system, and discuss the possibility of a distributed implementation. We also describe a parallel implementation of the algorithm, capable of indexing several gigabytes per hour

    Practical methods for constructing suffix trees

    Full text link
    Sequence datasets are ubiquitous in modern life-science applications, and querying sequences is a common and critical operation in many of these applications. The suffix tree is a versatile data structure that can be used to evaluate a wide variety of queries on sequence datasets, including evaluating exact and approximate string matches, and finding repeat patterns. However, methods for constructing suffix trees are often very time-consuming, especially for suffix trees that are large and do not fit in the available main memory. Even when the suffix tree fits in memory, it turns out that the processor cache behavior of theoretically optimal suffix tree construction methods is poor, resulting in poor performance. Currently, there are a large number of algorithms for constructing suffix trees, but the practical tradeoffs in using these algorithms for different scenarios are not well characterized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47869/1/778_2005_Article_154.pd

    Enhanced Suffix Arrays as Language Models: Virtual k-Testable Languages

    No full text
    In this article, we propose the use of suffix arrays to efficiently implement n-gram language models with practically unlimited size n. This approach, which is used with synchronous back-off, allows us to distinguish between alternative sequences using large contexts. We also show that we can build this kind of models with additional information for each symbol, such as part-of-speech tags and dependency information. The approach can also be viewed as a collection of virtual k-testable automata. Once built, we can directly access the results of any k-testable automaton generated from the input training data. Synchronous back- off automatically identies the k-testable automaton with the largest feasible k. We have used this approach in several classification tasks

    The enhanced suffix array and its applications to genome analysis

    No full text
    Abstract. In large scale applications as computational genome analysis, the space requirement of the suffix tree is a severe drawback. In this paper, we present a uniform framework that enables us to systematically replace every string processing algorithm that is based on a bottomup traversal of a suffix tree by a corresponding algorithm based on an enhanced suffix array (a suffix array enhanced with the lcp-table). In this framework, we will show how maximal, supermaximal, and tandem repeats, as well as maximal unique matches can be efficiently computed. Because enhanced suffix arrays require much less space than suffix trees, very large genomes can now be indexed and analyzed, a task which was not feasible before. Experimental results demonstrate that our programs require not only less space but also much less time than other programs developed for the same tasks.

    Novel Definition and Algorithm for Chaining Fragments with Proportional Overlaps

    No full text
    Abstract. Chaining fragments is a crucial step in genome alignment. Existing chaining algorithms compute a maximum weighted chain with no overlaps allowed between adjacent fragments. In practice, using local alignments as fragments, instead of MEMs, generates frequent overlaps between fragments, due to combinatorial reasons and biological factors, i.e. variable tandem repeat structures that differ in number of copies between genomic sequences. In this paper, in order to raise this limitation, we formulate a novel definition of a chain, allowing overlaps proportional to the fragments lengths, and exhibit an efficient algorithm for computing such a maximum weighted chain. We tested our algorithm on a dataset composed of 694 genome couples and accounted for significant improvements in terms of coverage, while keeping the running times below reasonable limits.
    corecore